Center of small quantum group and affine Springer fibers
(joint with R. Bezrutrarnikor, P. Boixeda-Alvarez and P. Shan)
G connected quasi-simple linear group/ \mathbb{C}
G dual group, simply connected
$T \subset B \subset G$ Carton and Bovel subgroups
$\Lambda=X^{*}(T) \supset Q=\mathbb{Z} \Phi \supset \Phi=$ root system
$t=$ Lie $T, \quad G=$ Lie $G, U(G)=$ enveloping algebra
Define $\breve{T}, \stackrel{\wedge}{\Phi}, \check{\Phi}$ similarly
$W=$ Weyl group

$$
W_{l, \text { of }}=W \times l Q^{v} \subset \quad W_{l, 0 x}=W \times l \Lambda
$$

(A) Positive characteristic:

Assume G defined over $k=\bar{k}$, char $(k)=p>0$

Fr: $G \longrightarrow G$ Frobenius map
$G \supset G_{1}=\operatorname{ka}\left(\mathrm{Fr}_{r}\right)=$ Frobenius kernel $=$ a group scheme
$k[G] \longrightarrow k_{2}\left[G_{1}\right]=$ finite dimensional Hopf olgebra
$g=$ restricted Lie algebra with p-operation

$$
g \rightarrow g \quad, \quad x \mapsto x^{[p]}
$$

$\mu(G)=$ restricted enveloping algebra

$$
=U(g) /\left(x^{p}-x^{[p]} ; x \in G\right)
$$

$=b_{2}\left[\sigma_{1}\right]^{*}$ as Hopf algebra (finite dimensional)
$\operatorname{Rep}\left(G_{1}\right)=$ finite dimensional rational G_{1}-modules
$=\operatorname{Comod}\left(l_{2}\left[\sigma_{1}\right]\right)$
$=\operatorname{Rep}(\mu(\sigma))$

Dist (G) $\subset b_{2}[G]^{*}$ distribution algebra
$\operatorname{Rep}(6)=$ finite dimensional rational G -modules

$$
=\operatorname{Rep}(\operatorname{Dist}(G))
$$

= finite dimensional integrable Dist (6)-modules

There are algebra homomorphisms

$$
U(G) \longrightarrow \mu(G) c \operatorname{Dist}(G)
$$

Steinherg tensor product formula $\Rightarrow \operatorname{Ira}\left(G_{1}\right)$ determins In (G)

EX:
(a)

$$
\begin{aligned}
& G=G L_{n}, \quad F_{r}^{*} \in \operatorname{Aut}_{l_{\log }}\left(l_{k}\left[G L_{m l}\right), \quad F_{r}^{*}\left(X_{i j}\right)=X_{i j}^{P}\right. \\
& x^{[P 3}=x^{p} \quad \forall x \in g l_{n}
\end{aligned}
$$

(b) $G=G_{a}, \quad b_{2}\left[G_{a}\right]=l_{2}[t], \quad F_{r}^{*}(t)=t^{p}$

$$
\mu\left(G_{a}\right)=l_{2}\left[G_{a, 1}\right]=l_{2}[t] /\left(t^{P}\right) \text { self-dual }
$$

(B) Quantum groups:
$\zeta \in \mathbb{C}^{x}$ root of 1 of order $=l, l$ is good (odd, $>h=$ Coxeter number, prime to 3 in type G_{2})

We have the following quantum groups attached to $\stackrel{G}{G}$:
(a) $U_{3}=$ DeConciui-Kac quant un group (ah. of $U(\breve{g})$)
(b) $U_{3}=$ Lusstig quantum group (an. of $\left.\operatorname{Dist}(\breve{G})\right)$
(c) $\mu_{3}=$ small quantum group (ah. of $\mu\left(\breve{G}_{\mathrm{I}}\right)$)

There are algebra homomorphisms

$$
\begin{aligned}
U_{5} & \longrightarrow \mu_{5} \subset U_{5} \xrightarrow{F_{r}} U_{1}=U(\check{g}) \\
F_{r}^{*}: \operatorname{Rep}(\check{G}) & =\operatorname{Rep}\left(U_{1}\right)
\end{aligned}>\operatorname{Rep}\left(U_{5}\right) \quad l
$$

$\operatorname{Rep}\left(U_{3}\right)=(\check{\wedge}$ graded, integrable $)$ finite dimensional modules

$$
\operatorname{Rep}\left(U_{1}\right)=\operatorname{Rep}\left(\check{G}_{G}\right)
$$

$\operatorname{Rep}\left(u_{5}\right)=$ finite dimensional modules

NB: $\quad A=$ abstract group

Braided tensor de-equivariantiation Braided tensor
\mathbb{C} - linear categories with $\operatorname{Rep}(A)_{\text {-action }} \varepsilon^{A}$ equivariantization \mathbb{C} - linear categories with A-action E

$$
\begin{aligned}
O b_{j}\left(\varphi^{A}\right) & =\left\{\left(X, \phi_{a}\right) ; X \in \operatorname{Obj}_{j}(\varphi), a \in A, \phi_{a}: a(X) \xrightarrow{\sim} X\right\} \\
& =\{A \text {-equivariant objects }\}
\end{aligned}
$$

Idem if A is an offline ôgebraic group

EX:
(a) 6 -variety $x \Rightarrow \operatorname{Coh}(x)^{G}=\operatorname{Coh}_{G}(x)$
(b) (Arkhipor - Gaitsgory)

$$
\begin{aligned}
& \operatorname{Rep}\left(\check{G}_{\mathrm{G}}\right) \stackrel{\operatorname{Fr}^{*}(-) \otimes-}{\otimes} \operatorname{Rep}\left(U_{3}\right) \underset{\text { eq. }}{\rightleftarrows} \operatorname{deoq} . \\
& \operatorname{Rep}\left(\mu_{3}\right)^{\breve{G}}=\operatorname{Rep}\left(U_{3}\right) \\
& \operatorname{Rep}\left(v_{5}\right)=\underset{\operatorname{Rep}(G)}{\operatorname{Vep}\left(U_{3}\right)} \\
& \Rightarrow Z\left(u_{3}\right)^{\check{G}}=Z\left(U_{3}\right) \cap u_{5}
\end{aligned}
$$

Block decomposifion:

$$
\begin{aligned}
& u_{3}=\underset{\omega \in \tilde{\Lambda} / W_{l, a f}}{\oplus} u_{5}^{\omega} \\
& u_{5}^{0}=\text { prinapal block }
\end{aligned}
$$

conJ (Lachowska- Q_{i}): Type A
(a) $\operatorname{dim} Z\left(u_{\zeta}\right)=\frac{1}{(h+1) l}\binom{(h+1) l}{h}$
(b) $\operatorname{dim} Z\left(u_{\zeta}^{\circ}\right)=(h+1)^{h-1}$
(c) $\stackrel{v}{G}$ acts trivially on $Z\left(\mu_{3}\right)$

NB: $\quad\{$ coinvariauts $\}=\mathbb{C}[t] /\left(\mathbb{C}(t]_{+}^{w}\right)$

$$
=H^{\bullet}(G / B)
$$

$=W_{x} \mathbb{C}[t]$ - module of dim \#W

$$
\begin{aligned}
\{\text { diagonal coinvariauts }\} & =\mathbb{C}\left[t \oplus t^{v}\right] /\left(\mathbb{C}\left[t \oplus t^{v}\right]_{+}^{w}\right) \\
& =W \times \mathbb{C}\left[t \oplus t^{v}\right] \text { _module with }
\end{aligned}
$$

quotient to $\mathbb{C}[Q /(h+1) Q]$ as W-module
$W \times \mathbb{C}\left[t \oplus t^{v}\right]=\operatorname{gr}$ (Chevednik's rational algebra DAMA)
In type A we have (Haiman, Gordon)

$$
\begin{aligned}
\mathbb{C}\left[t \oplus t^{v}\right] /\left(\mathbb{C}\left[t \oplus t^{v}\right]_{+}^{w}\right) & =\mathbb{C}[Q /(h+1) Q] \\
& =\operatorname{gr}(\text { simple } D A H A \text { - module }) \\
\operatorname{dim}\left(\mathbb{C}\left[t \oplus t^{v}\right] /\left(\mathbb{C}\left[t \oplus t^{v}\right]_{+}^{w}\right)\right) & =(h+1)^{h-1}
\end{aligned}
$$

(C) Geometrization:

* Affine flag manifolds:

$$
\begin{aligned}
& \check{\Lambda} \subset \check{\Lambda} \underset{\mathbb{Z}}{ } \otimes \mathbb{R}=t_{\mathbb{R}} \\
& \begin{aligned}
t_{\mathbb{R}} \supset \bar{A} & =\text { closed fundamental alcove } \\
& =\left\{\lambda \in t_{\mathbb{R}} ; 0 \leqslant(\mu, \tilde{\alpha}) \leqslant l, \forall \tilde{\alpha} \in \breve{\Phi}\right\} \\
& =\text { fundamental domain for } W_{l, \text { of }} \otimes t_{\mathbb{R}}
\end{aligned}
\end{aligned}
$$

$$
\tilde{\Lambda} / W_{l, \text { of }} \simeq \tilde{\Lambda} \cap \bar{A}
$$

EX: $\quad G=P S L_{3}$

$$
K^{(e)}=\mathbb{C}\left(\left(\pi^{l}\right)\right) \subset K=\mathbb{C}((\pi)) \supset \theta=\mathbb{C} \llbracket \pi \rrbracket
$$

$\omega \in \bar{A}$ labels a parahoric subgroup $P^{\omega} \subset G\left(k^{(l)}\right)$
$F l^{\omega,(l)}=G\left(K^{(l)}\right) / P^{\omega}$ partial affine flag manifold $/ G$

$$
F l^{\omega}=F l^{\omega,(1)}
$$

EX:
(a) $\omega=0 \Rightarrow F l^{\omega}=G r=G(k) / G(\theta)$
with $G(\theta)$ maximal compact in $G(k)$
(b) $\omega \in A \Rightarrow F l^{\omega}=F l=G(k) / I$
with $I \subset G(\theta)$ Inahori
$\mathbb{C}^{x} ® F l^{\omega}$ by loop rotation, $\zeta \in \mathbb{C}^{x}$

$$
G r^{3}=\operatorname{Li}_{\omega \in \tilde{\Lambda}\left(w_{l, \text { ex }}\right.} F l^{\omega,(l)}
$$

as homogeneous spares over $G\left(K^{(l)}\right)$

* Affine Springer fibers:

Choose $\gamma \in(G \otimes K)^{n s}$ compact and regular semi-simple
$F l_{\gamma}^{\omega} \subset F l^{\omega}$ affine Springer fiber

$$
\begin{aligned}
= & \left\{\operatorname{Ad}(g)\left(P^{\omega}\right) ; g \in G(k), \operatorname{Ad}\left(g^{-1}\right)(\gamma) \in \operatorname{rad}\left(\text { Lie } P^{\omega}\right)\right\} \\
& \subset \operatorname{Ad}(G(k))\left(P^{\omega}\right)=F l^{\omega} \\
\bar{K}= & \bigcup_{l} K^{(l)}=\text { algebraic closure of } k
\end{aligned}
$$

j homogeneous def $G(\bar{K})$ conjugate to $G \otimes t^{d}$ with $d \in \mathbb{Q}$
$\Rightarrow \mathrm{Fl}_{\gamma}^{\omega}$ ind-scheme, pure, equidimensional,
finite dimensional

$$
\gamma_{l}=s \otimes t^{l}, \gamma=\gamma_{1}, s \in g^{r s} \text { regular semis simple }
$$

$$
L E M: G r_{\gamma l}^{3}=\underset{\omega \in \tilde{\Lambda}\left(w_{l, l e x}\right.}{ } F l_{\gamma l}^{\omega,(l)} \simeq L_{\omega} \mid F l_{\gamma}^{\omega}
$$

Ex: $\quad G=S L_{2}, \quad \gamma=\left(\begin{array}{cc}t & 0 \\ 0 & -t\end{array}\right)$

$$
\begin{aligned}
& F l_{\gamma}=\ldots \\
& F l_{\gamma} / \mathbb{Z}=\gamma \quad \Rightarrow \quad \text { chain of } \mathbb{P}^{1 \prime} s \\
&
\end{aligned}
$$

* Computation of $\mathrm{H}^{\bullet}\left(\mathrm{Gr}_{\mathrm{re}}{ }^{3}\right)$:
(a) $T \Perp F l_{\gamma}^{\omega}$ with $\left(F l_{\gamma}^{\omega}\right)^{\top}=\left(F e^{\omega}\right)^{\top}=W_{\text {ex }} / W_{\omega}$

$$
W_{\omega}=\text { stabilizer of } \omega \in \Lambda^{v} \text { in } W_{\text {ex }}
$$

(b) $\mathrm{Fe}_{\gamma}^{\omega}$ has a paving by offline cells
$\Rightarrow \mathrm{H}_{T}^{\bullet}\left(\mathrm{Fl}_{\gamma}^{\omega}\right)$ equivarian H_{l} formal
(c) There are finitely many 1 dimensional T-orbit's in $\mathrm{Fl}_{\gamma}^{\omega}$ between any 2 fixed points
$\Rightarrow 6 K M$ applies to $H_{T}^{\bullet}\left(G_{r e}^{3}\right)$

$$
\begin{align*}
H_{T}^{\bullet}\left(F l_{\gamma}^{\omega}\right)=\{ & \left(a_{w}\right) \in F_{u n}\left(W_{e x} / w_{w}, H_{T}^{\bullet}\right) ; \tag{*}\\
& \left.a_{\omega} \equiv a_{S_{\alpha, m}} \cdot w \bmod \alpha, \forall(\alpha, m) \in \Phi \times \mathbb{Z}\right\}
\end{align*}
$$

$G L(t) \ni S_{\alpha, m}=$ reflexion / offine hyperplane

$$
\begin{aligned}
& H_{T}^{\bullet}\left(\sigma_{r e}^{3}\right)=\left\{\left(a_{x}\right) \in \operatorname{Fun}\left(\Lambda^{v}, H_{T}^{\bullet}\right) ;\right. \\
& \left.a_{x} \equiv a_{s_{\alpha, m} \cdot x} \bmod \alpha, \forall(\alpha, m) \in \Phi x \mathbb{Z}\right\}
\end{aligned}
$$

* Symmetries of affine Springer fibers:
$G(k) \subset F l^{\omega}$ and $T(k) \oplus F l_{\gamma}^{\omega}$
Left $W_{\text {ex - action on }} H_{T}^{\bullet}\left(F l_{\gamma}^{\omega}\right)$:
(a) $W_{e x} C H_{T}^{\bullet}\left(\mathrm{Fl}^{\omega}\right)$
(b) $\Lambda=X_{*}(T)=\pi_{0}(T(k)) \otimes H_{T}^{\bullet}\left(F l^{\omega}\right)$
extends to $W_{e x} \rightleftarrows H_{T}^{\bullet}\left(\mathrm{Fl}_{\gamma}^{\omega}\right)$ via GKM
Right action $W_{2 x} C^{\triangleright} H_{T}^{\bullet}\left(F \ell_{\gamma}\right)=$ Springer action

PROP:
(a) $\quad \operatorname{dim} H^{\bullet}\left(\mathrm{Fl}_{\gamma}\right)^{\omega_{\text {ex }}}=(h+1)^{r k}$
(b) $\operatorname{dim} H^{\bullet}\left(G r_{\gamma l}^{3}\right)^{W_{l, e x}}=\frac{1}{\# W} \prod_{i=1}^{n k}\left((h+1) l-h+e_{i}\right)$

$$
\left\{e_{i}\right\}=\{\text { exponents of } W\}
$$

NB:
(a) In type $\neq A$ part (a) is due to Boixeda Alhorez - Loser [BL]
(b) Pnoof of (b) uses reduction to $\operatorname{dim} H^{\circ}\left(\mathrm{Gr}_{\gamma \ell}^{3}\right)$ with réelliptic (Sommers)
conJ: We have a commutative diagram

with W-inuariant bower map.

THM: We have a commutative diagram as above
with infective horizontal maps. The lower map is W-invariant

NB: (a) Restricting to principal block we get

$$
\begin{aligned}
& H^{\bullet}\left(\mathrm{Fe}_{\gamma}\right)^{W_{\text {ex }}} \xrightarrow{A} Z\left(\mu_{5}^{\circ}\right)^{\breve{G}} \\
& H^{\bullet}\left(\mathrm{Fl}_{\gamma}\right) \stackrel{\wedge}{B} Z\left(\mu_{5}^{\circ}\right)^{\stackrel{\top}{\top}}
\end{aligned}
$$

(b) In type A, the left map is invertible. Proving B is surjective implies also that $Z\left(\mu_{5}^{0}\right)^{\breve{G}}=Z\left(\mu_{3}^{0}\right) \quad[B L]$
(c) Compare with Soergel theorem:

$$
\begin{aligned}
\theta(g) & =B G G \text { category } \theta \text { of } g \\
& =\text { finitely generated B integrable } U(g) \text {-modules } \\
Z(\theta(g)) & =H^{\bullet}(G / B) \\
& =\mathbb{C}[t] /\left(\mathbb{C}(t]_{+}^{w}\right)
\end{aligned}
$$

(d) DAHA's act on the cohomoloyg of affine Springer fibers
\Rightarrow The conjecture relates $Z\left(u_{3}^{0}\right)$ with DAHA's
(e) To construct B we use GKM to define an isomorphism $H_{T}^{\bullet}\left(F l_{\gamma}\right) \xrightarrow{\sim} Z\left(T \propto \mu_{5}^{0}\right)$. The equivariant formality of L.H.S. gives a map $H^{\bullet}\left(\mathrm{Fl}_{\gamma}\right) c Z\left(\mu_{s}^{0}\right)$ which restricts to B
(D) Definition of the map A :

* Mixed geometry approach:
$D_{m, I^{u}}^{b}(G r)=I^{\mu}$-equt derived cat ${ }^{4}$ of mixed complexes on $G r$
$D_{m, I W}^{b}(\mathrm{Fl})=$ Iwahori-Whittakee derived category of mixed complexes on Fl

purity
[BY13]

$$
\operatorname{Hom}\left(i d_{D_{m, I^{u}}^{b}\left(G_{r}\right)}, i d_{\left.\left.D_{m, I^{u}}^{b}\left(G_{r}\right)^{(\cdot}\right)\right)}\right.
$$

degrading functor

$$
Z\left(D_{I^{u}}^{b}\left(G_{r}\right)\right) \stackrel{[A B G 04]}{=} Z\left(\operatorname{Rep}\left(U_{5}\right)^{0}\right)
$$

$$
Z\left(u_{s}^{0}\right)^{\check{G}}=Z\left(U_{3}\right) \cap u_{5}^{0} \rightarrow Z\left(\operatorname{Rep}\left(U_{s}\right)^{\circ}\right)
$$

CLAIM: (*) factors through $H^{*}(\mathrm{Fl}) \longrightarrow Z\left(\mu_{g}^{0}\right)^{G^{V}}$

* Harish_Chandra approach:

$$
Y=\operatorname{Spec}(A / I) \subset X=\operatorname{Spec}(A)
$$

$\widetilde{N}_{Y}(x)=$ deformation to normal withe

$$
=\operatorname{Spec}\left(A\left[\hbar, \hbar^{-1} I\right]\right)
$$

$N_{Y}(X)=$ normal wine of Y into X

$$
\begin{aligned}
& =\operatorname{Spec}\left(\oplus_{n \geq 0}^{ \pm} I^{n} / I^{n+1}\right) \\
& =\widetilde{N}_{y}(x) \times\{0\} \\
& A I^{1}
\end{aligned}
$$

* Apply Bored's construction to $\mathrm{H}^{\circ}\left(\mathrm{Gr}^{3}\right)$:
$\mathscr{L}(\lambda) \in \operatorname{Pic}(F l)$ for all $\lambda \in \Lambda_{x} \mathbb{Z}=X^{*}\left(T_{x} \mathbb{C}^{x}\right)$

T-equivariance + cup product by $c_{1}(\mathscr{L}(\lambda))^{\prime}$ s give a map

$$
\begin{aligned}
H_{T}^{\bullet} \otimes H_{T}^{\bullet} & \longrightarrow H_{T}^{\bullet}(F l) \\
\| & \longrightarrow \mathbb{C}\left[N_{\Delta}(t \times t)\right]^{\oplus \pi_{1}(G)} \\
\mathbb{C}(t \times t] & \longrightarrow
\end{aligned}
$$

with $\Delta=t \underset{t / w}{x} t \subset t_{x} t$
Similarly, let $\Omega=\left\{\begin{array}{c}\{1\} \times(T / W) \text { relative to the map } \\ T / W\end{array}\right.$

$$
T / W \rightarrow T / W, \quad W \cdot t \mapsto W \cdot t^{l}
$$

$\Rightarrow H^{\bullet}\left(\mathrm{Gr}^{3}\right)=\mathbb{C}\left[N_{\Omega}(T / \omega)\right]$ by equivariant formality

* Harish Chandra isomorphism for quantum groups (Rosso):
$U_{3}=$ Losstig quantum group at $q=3=U_{q} /(q-3)$

$$
U_{q}=a \mathbb{C}\left[q, q^{-1}\right] \text {-algebra }
$$

$U_{\hat{j}}=$ completion of U_{q} at $q=3$
$=a \mathbb{C} \mathbb{C} \mathbb{B}$-algebra with $\hbar=q-3$
$H C: \mathbb{C} \| \hbar \rrbracket[T / W] \xrightarrow{\sim}\left(U_{\hat{3}}\right)$ Harish Chandra isomorphism

Specialize $\hbar=0 \Rightarrow H C$ factorizes through

$$
\mathbb{C}\left[\tilde{N}_{\Omega}(T / \omega)\right]_{\widehat{\hbar}=0} \longrightarrow Z\left(U_{\hat{3}}\right)
$$

(Proof uses DeConcini-Kac's theorem on $Z\left(U_{5}\right)$)
\Rightarrow The fiber at $\hbar=0$ gives a map

$$
H^{\bullet}\left(G r^{3}\right)=\mathbb{C}\left[N_{\Omega}(T / w)\right] \longrightarrow Z\left(U_{3}\right)
$$

PROP: This map factors through

$\left(\right.$ Proof uses GKM description of $\left.\mathrm{H}^{0}\left(\mathrm{Gr}_{\gamma l}^{3}\right)\right)$

bon anniversaire michele!!

